ReferatWorld.ru
» » » ЛИСП-реализация основных способов вычисления гамма-функции
Вернуться назад

ЛИСП-реализация основных способов вычисления гамма-функции

СОДЕРЖАНИЕ

Введение

1. Постановка задачи

2. Математические и алгоритмические основы решения задачи

2.1 Понятие гамма-функции

2.2 Вычисление гамма функции

3. Функциональные модели и блок-схемы решения задачи

4. Программная реализация решения задачи

5. Пример выполнения программы

Заключение

Список использованных источников и литературы


ВВЕДЕНИЕ

Выделяют особый класс функций, представимых в виде собственного либо несобственного интеграла, который зависит не только от формальной переменной, а и от параметра.

Такие функции называются интегралами зависящими от параметра. К их числу относится гамма функции Эйлера.

Гамма функция представляется интегралом Эйлера второго рода:

.

Гамма-функция расширяет понятие факториала на поле комплексных чисел. Обычно обозначается Γ(z).

Была введена Леонардом Эйлером, а своим обозначением гамма-функция обязана Лежандру.

Через гамма-функции выражается большое число определённых интегралов, бесконечных произведений и сумм рядов.


1. Постановка задачи

Требуется реализовать основные способы вычисления гамма-функции:

1. Гамма-функции для целых положительных n равна

Г (n) = (n - 1)! = 1·2... (n - 1). (1)

2. Для x>0 гамма-функция получается из ее логарифма взятием экспоненты.

. (2)

3. Гамма-функции для ряда точек:

(3)

Пример 1.

Вычислить гамма-функции Г(6).

Решение:

Так как 6 – положительное целое число, воспользуемся формулой (1):

Г(6) =(6-1)! = 5! = 120

Ответ: 120.

Пример 2.

Вычислить гамма-функции Г(0,5).

Решение:

Воспользуемся формулой (2):


.

.

Ответ: .

Пример 3.

Вычислить гамма-функции Г(1,5).

Решение:

Воспользуемся формулой (3):

y = 1.5 + 2 = 3.5.

.

Ответ: .


2. Математические и алгоритмические основы решения задачи

2.1 Понятие гамма-функции

Гамма функцию определяет интеграл Эйлера второго рода

G(a) =(2.1)

сходящийся при .

Рисунок 1. График гамма-функции действительного переменного

Положим =ty, t > 0 , имеем

G(a) =

и после замены , через и tчерез 1+t ,получим


Умножая это равенство и интегрируя по t и пределах от 0 до , имеем:

или после изменения в правой части порядка интегрирования ,получаем:

откуда

(2.2)

заменяя в (2,1) , на и интегрируем по частям

получаем рекурентною формулу

(2.3)

так как


Рисунок 2. График модуля гамма-функции на комплексной плоскости

При целом имеем

(2.4)

то есть при целых значениях аргумента гамма-функция превращается в факториал, порядок которого на единицу меньше взятого значения аргумента. При n=1 в (2.4) имеем

2.2 Вычисление гамма функции

Для вычисления гамма-функции используется аппроксимация логарифма гамма-функции. Сама же гамма вычисляется через него.

Для аппроксимации гамма-функции на интервале x>0 используется формула (для комплексных z) такого вида:

.


Она похожа на аппроксимацию Стирлинга, но в ней имеется корректирующая серия. Для значений g=5 и n=6, проверено, что величина погрешности eps не превышает . Кроме того, погрешность не превышает этой величины на всей правой половине комплексной плоскости: Re z > 0.

Для получения действительной гамма-функции на интервале x>0 используется рекуррентная формула Gam(z+1)=z*Gam(z) и вышеприведенная аппроксимация Gam(z+1). Также можно заметить, что удобнее аппроксимировать логарифм гамма-функции, чем ее саму.

Во-первых, при этом потребуется вызов только одной математической функции – логарифма, а не двух – экспоненты и степени (последняя все равно использует вызов логарифма), во-вторых, гамма-функция – быстро растущая для больших x, и аппроксимация ее логарифмом снимает вопросы переполнения.

Для аппроксимации LnGam() – логарифма гамма-функции – получается формула:

Значения коэффициентов Ck являются табличными данными (Таблица 1).

k C
1 2.5066282746310005
2 1.0000000000190015
3 76.18009172947146
4 -86.50532032941677
5 24.01409824083091
6 -1.231739572450155
7 0.1208650973866179e-2
8 -0.5395239384953e-5

Таблица 1. Значения коэффициентов Ck

Сама гамма-функция получается из ее логарифма взятием экспоненты. .


3 Функциональные модели и блок-схемы решения задачи

Функциональные модели и блок-схемы решения задачи представлены на рисунке 3, 4, 5, 6.

Условные обозначения:

- X – параметр функции;

- RS – инкремент;

- GN – список коэффициентов;

- Y – вспомогательная переменная;

- RES – результат вычисления гамма-функции;

- GAM – временная переменная, содержащая вычисление гамма-функции.

Рисунок 3 – Функциональная модель решения задачи для функции GAMMA

Рисунок 4 – Функциональная модель решения задачи для фун

Внимание, отключите Adblock

Вы посетили наш сайт со включенным блокировщиком рекламы!
Ссылка для скачивания станет доступной сразу после отключения Adblock!

Скачать
Курсовые работы по информатике и программированию СОДЕРЖАНИЕ Введение 1. Постановка задачи 2. Математические и алгоритмические основы решения задачи 2.1 Понятие гамма-функции 2.2 Вычисление
Оценок: 1000 (Средняя 5 из 5)

Одними из наиболее популярных услуг на рынке IT-технологий являются создание и продвижение лендингов. Они способны положительно влиять на деятельность любого бизнес-проекта в интернете. Судя по многочисленным отзывам, заказавшие создание лендингов люди ни разу не пожалели о потраченных деньгах. Они вложили в будущее, которое неразрывно связано с интернетом. Всё больше и больше предпринимателей обращаются к услугам разных агентств, веб-студий, чтобы заказать создание лендинга у профессионалов.

© 2017 - 2022 ReferatWorld.ru